Air Pressures for Pneumatic Controllers and Transmission Systems
Original Publication 1967

Disclaimer

MCAA, the Measurement, Control & Automation Association, provides this document as an information guide only. It should not be relied upon or used as a substitute for research or independent, professional advice. Since its original publication many years ago, it has been declared obsolete by the organization that created it. That organization will no longer permit its name to be associated with the document. MCAA has acquired the rights to several documents and offers them to the public as information guides only.

Terminology, techniques or technology mentioned in this document may no longer be applicable or up-to-date and the reader is cautioned to draw only limited inferences therefrom and to bear in mind the length of time that has elapsed since this document was first developed. The reader is further cautioned to use or seek professional advice before using or implementing any of the information contained herein.

MCAA makes no representations, warranties or guarantees to the reader with respect to the content, accuracy or completeness of this material and strongly cautions the reader to use this document as an information guide only. MCAA disclaims any warranty, express or implied, including but not limited to, an implied warranty of accuracy or fitness of the document in whole or in part, whether in text, graphs, diagrams or otherwise.

MCAA is not responsible for any loss or damage caused to any person as a result of the use of any information contained in this document. The user assumes all risk and liability for any loss or damage caused to any person as a result of the use of the information contained herein.

The Measurement, Control & Automation Association is a national trade association whose members are manufacturers and distributors of instrumentation, systems and software used in industrial process control and factory automation worldwide. The Association helps the management teams of process and factory automation product and solution providers run and grow successful businesses by offering timely, unique and highly specialized resources acquired from shared management benchmarks and strategies where proprietary company information is secure. MCAA can be contacted through its website at www.measure.org.

The Measurement, Control & Automation Association
P.O. Box 3698
Williamsburg, VA 23187
Voice and Fax: (757) 258-3100 – mcaa@measure.org
Visit our Website at http://www.measure.org
Air Pressures for
Pneumatic Controllers and
Transmission Systems

1. Scope and Purpose

1.1 This standard applies to:
 (a) Pneumatic controllers
 (b) Pneumatic intelligence transmission systems

1.2 The purpose of this standard is to establish:
 (a) Standard operating pressure ranges for pneumatic intelligence transmission systems.
 (b) Standard air supply pressures (with limit values) for operation of pneumatic controllers and pneumatic intelligence transmission systems.

Note: For pneumatic controllers, the standards for air supply pressures apply directly. On the other hand, while it is common practice to refer to a particular controller as—say—a 3 to 15 lb. device, output air pressure may vary from zero to supply pressure, with the effective operating pressure range depending on the mechanism positioning the final control element. The range of operation will be whatever is required for control action, limited by the supply pressure. On this basis, it appears technically difficult to apply the definition of standard operating pressure range to pneumatic controllers.

Example: Assume a pneumatic controller with an associated air-to-close diaphragm actuator operating a single seated valve directly without a pneumatic positioning relay. At maximum pressure drop across the valve, the valve might be wide open at 6 psi and closed at 16 psi; at minimum pressure drop across the valve, the valve might be open at 3 psi and closed at 11 psi. A controller designed for and operating with a supply pressure of between 18 and 20 psi would be suitable for this application; its operating pressure range is as required, limited by the supply pressure for which it is designed and at which it is operated.

2. Definitions

2.1 The following definitions give the meaning of the terms as used in this standard. Defined terms are italicized throughout this standard.

2.2 Pneumatic Controller. A pneumatic controller is a device which measures the value of a variable quantity or condition and operates to correct or limit deviation of this measured value from a selected reference by pneumatic means.

2.3 Pneumatic Intelligence Transmission System. A pneumatic intelligence transmission system is a system for conveying information comprising (1) a transmitting mechanism converting input information into a corresponding air pressure, (2) connecting tubing and (3) a receiving element responsive to air pressure to develop an output directly corresponding to the input information.

Example: A flow measurement is converted into an air pressure at the point of measurement and transmitted by pneumatic means to a remote recorder.

2.4 Operating Pressure Range. The operating pressure range consists of stated high and low values of pneumatic pressure for full range operation of pneumatic intelligence transmission systems.

2.5 Operating Pressure Span. The operating pressure span is the difference between the stated high and low pneumatic pressure values of an operating pressure range.

2.6 Supply Pressure. Supply pressure is the pressure of air supplied to the pneumatically-operated devices to which this standard applies.

3. Operating Pressure Ranges

3.1 This standard establishes two operating pressure ranges. These ranges have spans of 12 psi and 24 psi.

3.1.1 12 psi Span. The operating pressure range for the 12 psi operating pressure span shall be 3 psi to 15 psi for pneumatic intelligence transmission systems.
3.1.2 24 psi Span. The operating pressure range for the 24 psi operating pressure span shall be 3 psi to 27 psi for pneumatic intelligence transmission systems.

4. Supply Pressures

4.1 This standard establishes two supply pressures.

4.1.1 12 psi Span. The supply pressure for the 12 psi span (3 psi to 15 psi operating pressure range) shall be not less than 18 psi nor greater than 20 psi.

4.1.2 24 psi Span. The supply pressure for the 24 psi span (3 psi to 27 psi operating pressure range) shall be not less than 30 psi nor greater than 35 psi.